If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2q^2+4q+-96=0
We add all the numbers together, and all the variables
2q^2+4q=0
a = 2; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·2·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*2}=\frac{-8}{4} =-2 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*2}=\frac{0}{4} =0 $
| X⁴+15x²-+16=0 | | 2x-0.5x=54 | | 2x+(8/×)=18 | | k÷2+4=6 | | X-15+2x+9=12 | | 6x^2-14x-96=16/3 | | 5x-5+9x-1=120 | | 6x^2-14x-96=0 | | 7x-4+12x+6=135 | | 60((x÷3)+(x÷4)=5) | | 11/7=y | | 11x-3+23x-1=98 | | 4x-7=2x+11=x+3 | | X2+9x+640=0 | | V=1/3x3.14x8 | | 3y+6=12 | | 5a−2a+4=22−3a. | | -2x-2+3-6x=-31 | | -x+43=2x+19 | | 20x+15x=12 | | 6-2/3*n=-10 | | 20x+15x=5 | | 16+2u=86 | | 98=6b+2 | | 6s+9|=|s+7| | | 2v-33=3 | | 14x+7=+4x+27* | | 8=s/2-2 | | 14v+15−5v=4(v+25) | | 7(2x+3)=63 | | 2(p-46)=96 | | 5(5n)-4n=-2 |