If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2q^2+7q+5=0
a = 2; b = 7; c = +5;
Δ = b2-4ac
Δ = 72-4·2·5
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-3}{2*2}=\frac{-10}{4} =-2+1/2 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+3}{2*2}=\frac{-4}{4} =-1 $
| 6h(9-3h)=6-3(h+2) | | d/7+4=2 | | 1/3x-1=8 | | y2+14y=13 | | 27=49x-13+x-10 | | 4x^2-5x=3x^2+2x | | -16+3x-8-5x=29 | | 6a-5a=12 | | 174=23x-20+13x+14 | | 6-2x=83 | | r=11=8r=29 | | 3g+3(-6+2g)=1-9 | | 347.89=190+0.57x | | x-12,527=215 | | 12x+1+4x+11=180 | | 5x-10=1x+5 | | 400-3x=115 | | 6f+9=4f+3 | | 19+4h=1−5h= | | -2(5x+11)=47-3(-6x+1) | | (7x)(3x)(5x+50)=180 | | 2(b-9)=5(b+1)-14 | | 4(x+6)+4x=3(x+8) | | 125t-120=180t-110 | | m+3=-4m-22 | | 8(x-10)=3x | | 12-7s-17=6s+31-4s | | 60=|300-48t| | | 5r^2-24r+16=0 | | 500.26=240+0.91x | | 3(b+1)=21 | | 6n-3=6n+4 |