If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2q^2-2q=100
We move all terms to the left:
2q^2-2q-(100)=0
a = 2; b = -2; c = -100;
Δ = b2-4ac
Δ = -22-4·2·(-100)
Δ = 804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{804}=\sqrt{4*201}=\sqrt{4}*\sqrt{201}=2\sqrt{201}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{201}}{2*2}=\frac{2-2\sqrt{201}}{4} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{201}}{2*2}=\frac{2+2\sqrt{201}}{4} $
| 3y-24(1/2y-4=-2 | | -16=g+71 | | 2(5x+5)=4x(5x=5) | | x^2-4x+38=-x^2+16x-12 | | (x)=13.4 | | 14x-10=8+10x | | 1/2-1/6=5x+5/6 | | 18x-3=29-10x | | 12x-3=11-2x | | 2x+4=15(2) | | 8x+13=4x+45 | | 3x+2=x+24 | | 6=12x-11x=0 | | 5x-7+4x=56 | | x+-11/17=0 | | p^2+8p=84 | | 7x2+12x-4=0 | | Y^2-6y+48=0 | | 6-11m+2=22 | | 5h+1-4h=10 | | 11-7y+3=-7 | | 4+3n-12=25 | | 5=9+6-2x | | 59-3d=2 | | 12-2x=2(2+x)+17 | | 7c-30=5(c-6) | | 4.9t^2-10t-1.5=0 | | (3x-5)/6=12 | | 3y-2=7y-26 | | 56.9/321=v2/298 | | 24=13n=4n+9 | | 5=-x+4 |