If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2s^2=4
We move all terms to the left:
2s^2-(4)=0
a = 2; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·2·(-4)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*2}=\frac{0-4\sqrt{2}}{4} =-\frac{4\sqrt{2}}{4} =-\sqrt{2} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*2}=\frac{0+4\sqrt{2}}{4} =\frac{4\sqrt{2}}{4} =\sqrt{2} $
| 6m+10m+4m-25=20+5-5m | | 16c+8=8c+24 | | 5a+a-2=10 | | 5y+40=10y+20 | | b+8-10=20 | | 2-8x=-10 | | n2=-1 | | x-26=94 | | g2+10=10 | | 7x=102+4x | | -1(x^2-x-12)=0 | | 4x-9=204+3x | | w2=36 | | 0.2^10x=2 | | 3x+1=25+x | | 7z-5=26 | | 3x+1=25+1 | | 5x-16=484 | | x+.21x=1500 | | (400+4x)×3+2(350+3x)=2800 | | 4t-3-(3t+4)=5t+4 | | 1/12=1/4+(6-1)d | | 2(z+1)=3(z+4) | | 1=7+(6-1)d | | 8(x+6)-6(9x-3)=16 | | (2/3)^x+1+(2/3)^x-1=13/9 | | 5x+9/3=-2 | | 15x-20=9x-2 | | 49=9+(6-1)d | | 18x+489=43x+65 | | 4(x-2)=3x+7 | | x-3/3=x-1/4 |