2t(t+10.5)+90=180

Simple and best practice solution for 2t(t+10.5)+90=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2t(t+10.5)+90=180 equation:



2t(t+10.5)+90=180
We move all terms to the left:
2t(t+10.5)+90-(180)=0
We add all the numbers together, and all the variables
2t(t+10.5)-90=0
We multiply parentheses
2t^2+21t-90=0
a = 2; b = 21; c = -90;
Δ = b2-4ac
Δ = 212-4·2·(-90)
Δ = 1161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1161}=\sqrt{9*129}=\sqrt{9}*\sqrt{129}=3\sqrt{129}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-3\sqrt{129}}{2*2}=\frac{-21-3\sqrt{129}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+3\sqrt{129}}{2*2}=\frac{-21+3\sqrt{129}}{4} $

See similar equations:

| 2+2/5(g+4)=4 | | 2x+16+5x-17=x | | |x+5|=•4x-7| | | 13x-715x=15 | | 2t°(t+10.5°)+90°=180° | | m+16=17 | | 25+j=3 | | 13(66b-60)=-104(2b-13) | | 7x-10=2x+26 | | 5x-1/3-6=4x+2 | | y(3y+2)+(y-3y2)=0 | | -7.25=0.6x-1,25 | | 0.5x+0.4=0.8x-1.1 | | 14x+3x+2=121 | | -4-5b=26 | | (4x-8)+(6x-12)=180 | | -10=10(3n-4) | | 3x+4/2+1=5x | | (7/10)^x=231 | | a(-4)=28 | | -2.4b-8.3=-0.4b-32.3 | | 3y+14=19 | | 2(x-1)+5=2x-3 | | -3(x-2)=9-3x | | -10x-8-6x=-40 | | (4x-9)=(2x+57) | | 1-4m=-16m-11 | | 6(2x+8)=-10×+30 | | 2(4x+9)=-27+21 | | 16=-4(y=3) | | 1/6b=-1 | | -23.41x-9.16=30.34 |

Equations solver categories