If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2+13t+6=0
a = 2; b = 13; c = +6;
Δ = b2-4ac
Δ = 132-4·2·6
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-11}{2*2}=\frac{-24}{4} =-6 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+11}{2*2}=\frac{-2}{4} =-1/2 $
| 13x-63=8x+67 | | -4b+b=-8(3-5b)-5(7b-8) | | -4x-8+2x-6=5x+7 | | 2^x=600 | | 125m-100m+138800=40800-175m | | 1=-1+x/4 | | 5x^2=8−18x | | 2(x-3)^2=8 | | x+8x=11 | | -4+2/3x=5 | | -54=-3b | | 11r+16=-20-14r | | 14x-40=60-7x | | 5-(n-4)=3*(4+2) | | -8x+24=4x | | x+7/19=-18/19 | | 2x^2+32x+88=0 | | 4x-2(x+3)=4 | | -7x-4=- | | -2=3x-14 | | 3x-9/5+x+28/4=4 | | 4(x-3)/3=20 | | (2h+7)-(1h+6)+3h=9 | | b+20=8 | | 13-20c=-11c-13-11c | | -x/4-7=2 | | -7v=917 | | -4=x/2+4 | | 9x-0.8=8.2 | | 2(n-12)=16 | | (10x)(7/4)(2)=70 | | t/13-444=-427 |