If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2+8t+7=0
a = 2; b = 8; c = +7;
Δ = b2-4ac
Δ = 82-4·2·7
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{2}}{2*2}=\frac{-8-2\sqrt{2}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{2}}{2*2}=\frac{-8+2\sqrt{2}}{4} $
| 5(2-7n=) | | 6=2/7y | | (5y2+2y-9)-(2y2+2y-3)= | | 7/11=u/4 | | (4x3-9x2+3x+7)+(-2x3+4x2+10x-5)= | | v/13=8/11 | | 150m−100m+43,200=45,900−175m | | 2x-(3-5x)=4(x+3 | | 2y/3=24 | | 30+2x=4x | | 3x+x+(3x-20)=190 | | 3x⌃2-8x=16 | | 15z-7=14z+7 | | 6−6w=-7w | | 4(a-4)=8a-(4a-16) | | -5p+9=-6p+5 | | g=-g+8 | | 4y^2-40y+24=0 | | -4p=-5p+8 | | 16=-8m-8m | | 16=-6n+8n | | 3x(7+10)=G+30 | | x^2-x-1=x2−x−1=-6x-1 | | 10x+17=-3 | | 0/7=15.8/x | | -20=3x+x | | -4=v+8+5v | | xX8/160=7.44 | | 7x-3+5x-3=180 | | 8y-3=16(1-2y) | | 5.6g+7=2.6g+13 | | 1x+24=20x+26 |