If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2+9t+4=0
a = 2; b = 9; c = +4;
Δ = b2-4ac
Δ = 92-4·2·4
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-7}{2*2}=\frac{-16}{4} =-4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+7}{2*2}=\frac{-2}{4} =-1/2 $
| -x-2=6-2x | | 13b−1=4b−19 | | 3(x=4)=3x-12 | | 120=0x | | 29.73=5s=3.58 | | 12z-11z=13 | | −4n+7+6n=−19 | | 5/7=p | | X+x+x+102=180 | | 7w=85 | | 3(5x-4)+8=6x-2(x-9) | | 15y=170 | | 0.1(6.32+1x)=0.9x | | 16x-4x+1=0 | | 8-5(6-6x)=0 | | -7+-11=v/5 | | 5(x-8)=7x+4 | | 1/3x+2=2x-13 | | 4(x+5)=-1 | | √(4-x^2)+3x=0 | | 7/3+3n=4/5n+12 | | 130=38.88+0.50x | | 5-3(8x+2)=7 | | 130=38.88+.50x | | √4x^2-1‾=-2x+5 | | √4x^2-1=-2x+5‾ | | 2h+5h-3h=20 | | 2x3-5x2+7x=0 | | 4y(y-7)=0 | | 6(-6+3v)=108 | | b/19-5b/19=36/19 | | e^×=-2 |