If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2+t=0
a = 2; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·2·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*2}=\frac{-2}{4} =-1/2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*2}=\frac{0}{4} =0 $
| 1/8h=500 | | 10x-2x+50=10x+40 | | 5x-50+5x-50+3x+4+3x+4=360 | | 576=32h | | 2(3x-7)=5x+14 | | -16=4(p-1) | | (5x)+30=180 | | 3/8=1/8+s | | 11=x/3+7 | | 0.3x+25.8=42 | | 4/11=10/x | | (4/5m)+4=12 | | m/1.6=5 | | 186=-7x+2(-5x+8) | | 4v+9=2v+9 | | 3x+5x=x-3x | | -7x-3x-17=8x=19 | | 5x+-12=3x | | 7/9=b-3/7 | | 7/10-2/5=x | | 38=-8x+6(x+6) | | 13x+5=6x+26 | | 9(w-7)=4w-33 | | (x+7)(x+1)=(+1) | | 4x-5(-6x-23)=-293 | | (Z+3)(z-9)=0 | | -16+6x=29+9x | | 4t=2t+7t | | 0.25m=15 | | x+30=(2x-12) | | -2+-2y=10 | | 101=-7x-2(6x-3) |