If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2-50t-10=0
a = 2; b = -50; c = -10;
Δ = b2-4ac
Δ = -502-4·2·(-10)
Δ = 2580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2580}=\sqrt{4*645}=\sqrt{4}*\sqrt{645}=2\sqrt{645}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{645}}{2*2}=\frac{50-2\sqrt{645}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{645}}{2*2}=\frac{50+2\sqrt{645}}{4} $
| 64=w*w*w | | -45=k-34 | | 131=(4x)+(x-7) | | -66=-6n | | 23=4t-7-tT=10 | | -9=27/j | | x+9x=24 | | 8k+17=-5+3k | | 4/7g=8 | | 4.9x^2+37.12x-125=0 | | 4(x-7)=-2x-22 | | x+7x=25 | | 10-4x=-3x-4 | | 10x–13=17x–41 | | 60=m/10 | | 12y+3=-6y+39 | | (6x)+36=90 | | 6x+39=2x+29 | | (x+10)+(12x+1)=90 | | 9/18*3=r | | (x+5)=(5x-3) | | 1.28+x=4.7 | | 3x+8+2x=18 | | -5+x5=-10 | | (4x-15)=(x+20)=180 | | 5/12x=15/14 | | 7x-1=78 | | 2t2=50t | | 6x-5+2x=-5+8x | | 1.5t2=50t | | 7x-17=4x+7 | | 4x-12=2(2x-8) |