If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2-50t-25000=0
a = 2; b = -50; c = -25000;
Δ = b2-4ac
Δ = -502-4·2·(-25000)
Δ = 202500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{202500}=450$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-450}{2*2}=\frac{-400}{4} =-100 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+450}{2*2}=\frac{500}{4} =125 $
| 20x+600=800 | | 42=-9x+51 | | 18–m=6 | | 7s+12=54 | | 85=c+62 | | 48+4.8x=120 | | -9=3t+64 | | 2t2-50t-5000=0 | | 14x=10÷14+14 | | 89=w+11 | | -x+8=-x-1 | | 4/8(10+x)=12(10) | | -1/4(y-7)=3 | | -6x+77=137 | | (y+1)/3=7 | | 28+2a=76 | | 31=15+8x | | 2x+18=12-92 | | x+3-7=8-16 | | 5(3x−2)+8=3x+10 | | -6+8y=-24 | | 1/(1+x)^2=0.875 | | 3(p+10)-(p-2)=0 | | 2(5x+2)=3(2x+3)+7 | | x+62/3=10+31/3 | | 4^2x-5=85 | | 24+4y=20 | | 12=2×x | | 10x-43=2x | | 8p-7=79 | | 6.9x-13.5=41.7 | | 3r-100=r-10 |