If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2-50t-30=0
a = 2; b = -50; c = -30;
Δ = b2-4ac
Δ = -502-4·2·(-30)
Δ = 2740
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2740}=\sqrt{4*685}=\sqrt{4}*\sqrt{685}=2\sqrt{685}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{685}}{2*2}=\frac{50-2\sqrt{685}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{685}}{2*2}=\frac{50+2\sqrt{685}}{4} $
| 18g+2g+2g-19g+3g=18 | | 2t-50t-30=0 | | 9/8=r/16r= | | 61.5t2-50t-10=0 | | x➗3=8 | | 61,52-50t-10=0 | | (16-2x)(16-2x)(x)=200 | | -2x–9=13 | | 0.47x+0.49=1-x | | 8•=(x•4) | | 9u^2=-99 | | v^2-2v+36=0 | | 4.9n-11=5 | | X-2.11+x=200.75 | | b^2-12b+59=0 | | 5(x-2)-(3x+4)=-16 | | 4j−3j+2j=15 | | (N-2)180=175n | | 60+90+(2x+2)=180 | | (2x+14)+64+76=180 | | 4m-13=-2m+5 | | 2/9*y=2/3 | | (4x+1)+57+90=180 | | 1.3n-(11+3.6n)=5 | | 52=18x | | 5b+14/b=17 | | 45+y=-20 | | (3x5)x4=3x | | 64=3^w | | 1.5t2-50t-10=0 | | 9b-7+4b=-17 | | 2t2-50t-10=0 |