2t2=121/196

Simple and best practice solution for 2t2=121/196 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2t2=121/196 equation:



2t^2=121/196
We move all terms to the left:
2t^2-(121/196)=0
We add all the numbers together, and all the variables
2t^2-(+121/196)=0
We get rid of parentheses
2t^2-121/196=0
We multiply all the terms by the denominator
2t^2*196-121=0
Wy multiply elements
392t^2-121=0
a = 392; b = 0; c = -121;
Δ = b2-4ac
Δ = 02-4·392·(-121)
Δ = 189728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{189728}=\sqrt{94864*2}=\sqrt{94864}*\sqrt{2}=308\sqrt{2}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-308\sqrt{2}}{2*392}=\frac{0-308\sqrt{2}}{784} =-\frac{308\sqrt{2}}{784} =-\frac{11\sqrt{2}}{28} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+308\sqrt{2}}{2*392}=\frac{0+308\sqrt{2}}{784} =\frac{308\sqrt{2}}{784} =\frac{11\sqrt{2}}{28} $

See similar equations:

| (5x-70)=(3x+10) | | 13/9=9-(-4)/6-x | | 1/4(x+2)=-1+1/2x | | 7p2–7p=7p | | 5c-17=58 | | V=32.6+1.8x | | 2x=372 | | 3.5x=25+3x | | (2-9x)1/2=2 | | x^2+70=17x* | | 2x-45=905 | | 7m=5m+8 | | 3x-45=905 | | 45x=905 | | 3.2x=5*2 | | x/55=1.5714 | | (125/140)=(75)^2/x^2 | | 11/7=55/x | | 2x-64=436 | | 66=-3(3n-5)-3 | | −9t+18=4t−60 | | 21-2n=14 | | x1+x2=1 | | 5(3x-1)-8(2x+3)=10 | | 6x+3+4x+3=180 | | –20j+6j+18j–9j+17=–3 | | 22+7p=32 | | 21=5+x+x-2 | | 47=3.14×x | | (3-4)1-|2-(3-x)|=4x-(6+x) | | 3^2+5^2=x^2 | | 4x=3000-20 |

Equations solver categories