If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2=5312t
We move all terms to the left:
2t^2-(5312t)=0
a = 2; b = -5312; c = 0;
Δ = b2-4ac
Δ = -53122-4·2·0
Δ = 28217344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{28217344}=5312$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5312)-5312}{2*2}=\frac{0}{4} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5312)+5312}{2*2}=\frac{10624}{4} =2656 $
| (2y-9)+(y+3)+(y-3)=270 | | n/2+n/3=20 | | 7-3p=79 | | (x)/(3)+7=19 | | 10+9k=37 | | -1=n+9/10 | | (2y-9)+y-3=y+3 | | 11-3x=44+8x | | 24=4(2m-8) | | 4p+8=56 | | -6=-3(-2d-6) | | 6z+13=–5z+37 | | 15t=t2 | | 2.5y=0.625 | | v/7+6=1 | | (4x+15)(12x-5)=90 | | 3(5a+2)=(3a-6) | | 4(5-3d=-16 | | 20.5y=0.625 | | -14=2(2c+5) | | 4h+12=22 | | r/5=1.8 | | 2)1/2y=5/8. | | 6x/5x=35 | | 2/5x÷3=-2/5x+11 | | 16=9x+2 | | -6x=168 | | 21/2y=5/8. | | 18=3(5c-4) | | 2/3+3/4=w/5 | | 1331=11x | | 22+15-d=17 |