If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2u(7u+2)=0
We multiply parentheses
14u^2+4u=0
a = 14; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·14·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*14}=\frac{-8}{28} =-2/7 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*14}=\frac{0}{28} =0 $
| 9z=139 | | (5x+29)=120 | | (6s+5)(s-2)=0 | | y=3(3)+14 | | 28.5y+5=9 | | v-4.8=3.71 | | (7p+5)(p+2)=0 | | 4x+29=10×-19 | | 30x=-27 | | 21-x=13-4 | | (5v+4)(7v+4)=0 | | 3x-(-2x+3)=7 | | -5x-5=5-5x+5 | | 6b-18=36,b= | | 2(x+2)=3(x+1) | | 6x+x+5=x | | -14-17x=-82 | | 1+-7(7m-4)=421 | | 3y-95=y-23 | | 3n=0.81 | | b/5+10=40 | | 4c+79=111 | | 9u+19=7u+31 | | 5n-4=18 | | 3.1x(2x+7)+-6.2x2=19.53 | | X=8-6t+t^2 | | 0=3x^2-15x+24 | | t+62=3t+40 | | 0.5m4.9=2.6 | | x/1.4=0.5/1 | | Y=8-6x-3x^2 | | 8w-15=73 |