If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2u^2+3u-5=0
a = 2; b = 3; c = -5;
Δ = b2-4ac
Δ = 32-4·2·(-5)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-7}{2*2}=\frac{-10}{4} =-2+1/2 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+7}{2*2}=\frac{4}{4} =1 $
| 5b+7=3b-17 | | 5(x-7)=2x+2 | | 7x-0.5=20.5 | | w-10=32 | | 43=x/2+13 | | Y=0.25x-11 | | (21)(w)-9=35 | | (21(w)-9=107 | | 12-(11)(a)=32 | | 12-(4)(a)=44 | | (5)(x)+14=29 | | 10^x=2.9 | | 5y+12=6y | | 3r-7=29 | | 3(2x+5)=4-(3+x)¨ | | 19+(16)(v)=51 | | (25)(x)+1=118 | | (g-4)(g+4)=g2-16 | | 8-(5)(x)=7 | | x+0.01x=200 | | (12)(y)+6=42 | | 9+6x=7x+10 | | 3x+1=2(1+3x)+19 | | x3+12x2+36x+64=0 | | 3^x-2-16=65 | | x+x+x-30=180 | | 17v+8v=60+15 | | 3x+9/7x=0 | | 3x+26=10x-2 | | 13+x-15=18-3x | | 3x+2=3x+3(2/3) | | 3x+2=3x+3×2/3 |