If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2u^2+6u+2=0
a = 2; b = 6; c = +2;
Δ = b2-4ac
Δ = 62-4·2·2
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{5}}{2*2}=\frac{-6-2\sqrt{5}}{4} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{5}}{2*2}=\frac{-6+2\sqrt{5}}{4} $
| 19=y/5-16 | | v/2+11=25 | | 10=8x-40+11=2x+20, | | 10=8x-4011=2x+20, | | 2y*3y=6y | | 5x+2(x-10,000)=55,000 | | Y+12=15y-4 | | 22=2u-12 | | l=80-1.5 | | 7z-15=6(z+4) | | 3x-1(2+x)=16 | | 39/2=117/n | | 2b−6=4 | | -20.4=5.1x | | -13x=53 | | p=48-3 | | 1-(x)/5=7 | | (3x)+3=3 | | 30+53.45x=60.75 | | 12y-18=7y+22 | | 1-(-3x)=5 | | 5x+19=180 | | 4/x+4=7/x+1 | | 6-3y=-9=2y | | 2/3x+4=-6-4 | | m=3+100 | | 9-(2x)=5 | | m=100+3 | | 7p+17=17 | | (-7x)-2=(-2) | | (5x)-13=(-22) | | m=100-3T |