If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2v^2-2v-1=0
a = 2; b = -2; c = -1;
Δ = b2-4ac
Δ = -22-4·2·(-1)
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{3}}{2*2}=\frac{2-2\sqrt{3}}{4} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{3}}{2*2}=\frac{2+2\sqrt{3}}{4} $
| 6(-6k+1)+19k=-20 | | -20u=-2u+6(-3u-7) | | -3s+3-s=-4s-2 | | 5(y+6)=54-y | | -15+13f=-15+17f-4f | | 5/2k+1=9 | | 3(-8j-19)-20=19-18j | | 10x-(15^2)=85 | | –6=q/2 | | 10x-(15x2)=85 | | -19-4c+10c=11+c | | 2t2−3t+1=0 | | 100-8m=3 | | {2×-y=14{×+3y=0 | | 2x=8.50 | | 10x-15x2=85 | | -17v-5=-17v-20 | | 16=x∙40 | | 954=1/3x | | -15w=-4(10w-14)-6 | | 24(m-970)=96 | | 5+4(x-1)=45 | | 575=23(j-950) | | 27=11+2n | | 10x-15(2)=85 | | –8(y–9)=40 | | 1=u/15-8 | | 11=1+a | | 2m^2+m+5=6 | | 21=–3v | | 2m+m^2+5=6 | | 6y–3(3y)=-12 |