2w(w+3w)=41

Simple and best practice solution for 2w(w+3w)=41 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2w(w+3w)=41 equation:



2w(w+3w)=41
We move all terms to the left:
2w(w+3w)-(41)=0
We add all the numbers together, and all the variables
2w(+4w)-41=0
We multiply parentheses
8w^2-41=0
a = 8; b = 0; c = -41;
Δ = b2-4ac
Δ = 02-4·8·(-41)
Δ = 1312
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1312}=\sqrt{16*82}=\sqrt{16}*\sqrt{82}=4\sqrt{82}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{82}}{2*8}=\frac{0-4\sqrt{82}}{16} =-\frac{4\sqrt{82}}{16} =-\frac{\sqrt{82}}{4} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{82}}{2*8}=\frac{0+4\sqrt{82}}{16} =\frac{4\sqrt{82}}{16} =\frac{\sqrt{82}}{4} $

See similar equations:

| 8z+10-2z=5+2z+15 | | (4x)^2=21+56-x | | x+3/4=7/2 | | 4/x×2=34 | | 2t^2-19=t+1-t^2= | | 25x+0=20x | | 3/x÷2=34 | | -59(x-3)-2x=46-4(x-1) | | -99-3x=11x+53 | | 4/8x+10=65 | | 8x+50=5x+65 | | 2(-0.2)+y=-3 | | 3+0.5d=1.5+1.25d | | 5x-95=2(5-8x) | | 2/3z=38 | | 2x4/5=4 | | 4x+12/5=3x-3 | | (t-2)^2+(t+3)^2=15 | | 9-t=t-3 | | Y=2x(6)-5 | | 3(4x+3)-2(x+1)=2(x+3) | | -6x+17=24 | | 2e=4e–16 | | |3x|=24 | | 7=2a+7=23 | | 2(x+3)=5x+(3x-6) | | -4x-3=-67 | | 21=-3+v/4 | | -4x-3=-47 | | 16x-58=12 | | 5x+2=3x+2(x+1) | | 4x-3= |

Equations solver categories