If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w(w+5)=40
We move all terms to the left:
2w(w+5)-(40)=0
We multiply parentheses
2w^2+10w-40=0
a = 2; b = 10; c = -40;
Δ = b2-4ac
Δ = 102-4·2·(-40)
Δ = 420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{420}=\sqrt{4*105}=\sqrt{4}*\sqrt{105}=2\sqrt{105}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{105}}{2*2}=\frac{-10-2\sqrt{105}}{4} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{105}}{2*2}=\frac{-10+2\sqrt{105}}{4} $
| 50=14-2z | | k+32=14 | | x+x/2=70 | | 8÷x=2.4 | | 5/7x-80=-70 | | x+4-2=37x=7 | | 3.3+10m=6.75 | | (3x+35)+(7x+3)=180 | | 3x+35+7x+3=180 | | y+1.05=7.26ç | | -1(x+3)+5x=45 | | 0.5x–3.5=0.2x–5 | | 5|2a+5|=10 | | 5/x-18=2x-9 | | 1/4y+1/7=9/28 | | 2(−3x+4)−12=6(−1x+5)−35 | | (4/3x-1/3)+(x+7)=232 | | 6y+8=2(3y-4 | | 2(−3z+4)−12=6(−1z+5)−35 | | 3(x+5)=2(2x-5) | | (15x+3)+(7x+1)=180 | | 3x+1+2x+2=36 | | 30x+7=6(5x+2) | | |4-3x|=5x+4 | | 2a+5=-10 | | 12+r=–2r+3r+12 | | 4x-8/6=-2 | | |2a+5|=-10 | | 8x=48+6x | | (1/2a-4=3-1/4a)4 | | |2a+5|=10 | | |2a+5|=10a |