If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w(w-12)=0
We multiply parentheses
2w^2-24w=0
a = 2; b = -24; c = 0;
Δ = b2-4ac
Δ = -242-4·2·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-24}{2*2}=\frac{0}{4} =0 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+24}{2*2}=\frac{48}{4} =12 $
| 2n-3=9-4n | | -19s+3-2s=18-20s | | 16-f=12 | | d=31/8(25)+82/8 | | -8n+35=-8(n-5) | | 14=2t^2-3t | | -19r=-260 | | 20p+17=5p-17+17p | | -6/5x+5=-1/2x-6/5 | | 17p=190+14 | | -7(-3+a)=39-4a | | 3(f+2)+2=17 | | n/13=10 | | 2r-1=r+7 | | 3.7(c-12.8)+4=13.99 | | 2m—5=13 | | 8d+24=3d-7 | | 18+6d=4d | | 2(-8+4x)+32=57 | | -2(4y-4)+2y=6(y+3) | | -112=8(-3p+7)+3p | | 2/3(t)-9=-1 | | 2(p+12)-12=-12 | | -13m+18m+9=-6 | | -19n-12=-13n+18 | | 5=18-y | | 7t^2-10=25 | | v/18=-14 | | 9x+12+7x+6+22=180 | | 7c-9=8c+4 | | 7-3(-4+3x)=82 | | 18-y=12 |