2w2-14w+21=(w-3)2

Simple and best practice solution for 2w2-14w+21=(w-3)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2w2-14w+21=(w-3)2 equation:



2w^2-14w+21=(w-3)2
We move all terms to the left:
2w^2-14w+21-((w-3)2)=0
We calculate terms in parentheses: -((w-3)2), so:
(w-3)2
We multiply parentheses
2w-6
Back to the equation:
-(2w-6)
We get rid of parentheses
2w^2-14w-2w+6+21=0
We add all the numbers together, and all the variables
2w^2-16w+27=0
a = 2; b = -16; c = +27;
Δ = b2-4ac
Δ = -162-4·2·27
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{10}}{2*2}=\frac{16-2\sqrt{10}}{4} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{10}}{2*2}=\frac{16+2\sqrt{10}}{4} $

See similar equations:

| 2x+7=4x+5/3-x-3/5 | | 210=1.2*d | | 9^x+1=32^x-1 | | x+4.5=9.18 | | u+1.8=9.21 | | A=4x9 | | 2×-8y=24 | | -10a−5=135 | | 2x×8-3=24 | | 10x−2x+8=48 | | 6÷a+8a=2 | | 25-x=6x-2x | | 4(y+3)+1y=8 | | 4x-15=x3 | | 15x=21+0.99x | | 2x+10+58+66=180 | | 7x+216=x | | 4x4=(5x+67) | | 1/3(6y-15)=-9 | | x^2+x+160=0 | | 4x-6+6=x+x-3+(x-3)/2 | | (x+59)+(84)+(x+51)=180 | | 180=(x+59)+(84)+(x+51) | | (x-2)^2=29-4x | | 1–8n–4n=1–2n | | (3)^{.05x}=243 | | (3)^{.5x}=243 | | 5=3x≥14 | | -60=12a | | x+0.05x=25 | | 1/2x+1/3=3/4. | | 4d=12d= |

Equations solver categories