If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x(-3+4x)=39
We move all terms to the left:
2x(-3+4x)-(39)=0
We add all the numbers together, and all the variables
2x(4x-3)-39=0
We multiply parentheses
8x^2-6x-39=0
a = 8; b = -6; c = -39;
Δ = b2-4ac
Δ = -62-4·8·(-39)
Δ = 1284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1284}=\sqrt{4*321}=\sqrt{4}*\sqrt{321}=2\sqrt{321}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{321}}{2*8}=\frac{6-2\sqrt{321}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{321}}{2*8}=\frac{6+2\sqrt{321}}{16} $
| 4+7x=7(x-1) | | 7x-35=4x+7 | | 12x2-7x+12=0 | | 8-(-7-8x)=31 | | 21/2w=63/4 | | 22x-19=20-33x | | 7w=10+2w | | 1x+2-1=1x+2 | | 5f+2=28 | | e/5-36=30+4 | | 32=(1/2)(3)(x^2 | | h=400-16*3^2 | | 32=(1/2)(3)(x2) | | -18-k=3k-6(8k+3) | | x+60+63=180 | | 1+14x=13x+13 | | -71=x➗64 | | (n)=1+(4-1)(-4.1) | | (2m/5)=(1/3)(2m-12) | | (n)=1+(10-1)(-4.1) | | -19-17=6x+3(-4-6x) | | 4/5x5+7/5=4 | | 8r+34=114 | | 1/2x-3=4/5x+1 | | 55x+10=50 | | 3(x-1=12 | | 3x-11x=21+x-15 | | 3k^2-6k+3=3 | | 3=-7x+17 | | 3x+2=×+2(x-1)+4 | | 2x+8+3x=7 | | 3.2x-11.86=3.5 |