If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x(11/2-x)=213=1/15
We move all terms to the left:
2x(11/2-x)-(213)=0
Domain of the equation: 2-x)!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
-x)!=-2
x!=-2/1
x!=-2
x∈R
2x(-1x+11/2)-213=0
We multiply parentheses
-2x^2+22x^2-213=0
We add all the numbers together, and all the variables
20x^2-213=0
a = 20; b = 0; c = -213;
Δ = b2-4ac
Δ = 02-4·20·(-213)
Δ = 17040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{17040}=\sqrt{16*1065}=\sqrt{16}*\sqrt{1065}=4\sqrt{1065}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{1065}}{2*20}=\frac{0-4\sqrt{1065}}{40} =-\frac{4\sqrt{1065}}{40} =-\frac{\sqrt{1065}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{1065}}{2*20}=\frac{0+4\sqrt{1065}}{40} =\frac{4\sqrt{1065}}{40} =\frac{\sqrt{1065}}{10} $
| 324=w-20 | | 3a^2-18a+4=5a^2+4 | | 20x−13x=14 | | 132 j=15 | | x^2+-6x+-8=0 | | -26c=676 | | g-103=52 | | 8^n^-5=48 | | 26=1a+5 | | 18u-4+u=13u-10 | | 6u=732 | | 6=¼x-14 | | (12/52)(11/51)(10/50)=x | | xx5=1/2=1/3 | | 2t+88=180 | | t-282=558 | | 45x+13=20 | | 6x-4=-4x+6x | | 9x-73=3x+19 | | 4z−2=14 | | d-5=69 | | 10x-22=3x+4 | | 7y-9-4y=-12 | | Y=4(0.7)^x | | 2t+31=180 | | f+37=42 | | 2b+48=180 | | 15=-2x+5=25 | | T=1.5^x | | d+12=86 | | 6r-10=46 | | (1+1/2x)=2(x+1) |