2x(2)+4(x(2)+3)-2=22

Simple and best practice solution for 2x(2)+4(x(2)+3)-2=22 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(2)+4(x(2)+3)-2=22 equation:



2x(2)+4(x(2)+3)-2=22
We move all terms to the left:
2x(2)+4(x(2)+3)-2-(22)=0
We add all the numbers together, and all the variables
4(+x^2+3)+2x2-2-22=0
We add all the numbers together, and all the variables
2x^2+4(+x^2+3)-24=0
We multiply parentheses
2x^2+4x^2+12-24=0
We add all the numbers together, and all the variables
6x^2-12=0
a = 6; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·6·(-12)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{2}}{2*6}=\frac{0-12\sqrt{2}}{12} =-\frac{12\sqrt{2}}{12} =-\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{2}}{2*6}=\frac{0+12\sqrt{2}}{12} =\frac{12\sqrt{2}}{12} =\sqrt{2} $

See similar equations:

| 6^x-5*6^(x-2)=186 | | m2+6m-82=0 | | 4x+x÷2=36 | | 7x+12=5x+24 | | m2+6m-1=0 | | 4x+x/2=36 | | (x-(3.5+12x/30)24+(x-35+12x/30)30=-270 | | 7+7.8h=12 | | 2=x/7+5/7 | | -3x+3(-3+x)=4 | | -24=-10t=3 | | 2a+18÷2=3a+1 | | 4=a=10/2 | | 2a+18/2=3a+1 | | 162^2-3y+33=0 | | (X)1.2/98=28/(x)1.8 | | 7x-2=10-3x=180 | | -11=3+2u | | 281=8-u | | g-3=5/3 | | 2(y+5)-14=26 | | 3*(y+4)=y | | 10^4.3=x | | (5x+3)-(2x-4)=(x-2)-(x-3) | | (3x+8)+(2x-5)=13 | | 2x^2-40x-1600=0 | | 12x-31=11 | | -5x-16=10x-1 | | 9(a=4)=54 | | 3(2x-1)=5(x-4) | | 1/4+21=x | | 1/4+17=x-4 |

Equations solver categories