2x(2x+1)=2x+10

Simple and best practice solution for 2x(2x+1)=2x+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(2x+1)=2x+10 equation:



2x(2x+1)=2x+10
We move all terms to the left:
2x(2x+1)-(2x+10)=0
We multiply parentheses
4x^2+2x-(2x+10)=0
We get rid of parentheses
4x^2+2x-2x-10=0
We add all the numbers together, and all the variables
4x^2-10=0
a = 4; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·4·(-10)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*4}=\frac{0-4\sqrt{10}}{8} =-\frac{4\sqrt{10}}{8} =-\frac{\sqrt{10}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*4}=\frac{0+4\sqrt{10}}{8} =\frac{4\sqrt{10}}{8} =\frac{\sqrt{10}}{2} $

See similar equations:

| -8x+2=-24+16x | | 2x+2x+(x-8)=4(x+2) | | 5n+34=4+10n | | -2(X+2)=4x-9 | | 3+x15=9 | | 6=30b= | | (3x-1)^2=4 | | 1.2+y=3.9 | | x^2−10=159 | | .08-2000=3000x | | 5(4g-12)=32 | | 0,5x+0,5x=60 | | 2000=3.14*r*2*15 | | 3.14x49= | | -6+2r=12 | | 15=39-3f | | 6.5=6x+5 | | 2x-46+80=80 | | 2x-46+80=60 | | 4x 6+3−x 4=6x+12 | | x=(3(x+2))/(5) | | 5.5=2*x*3.14 | | w/9=20/45 | | 7-5y+2+1=5 | | 2x-46+80=360 | | 4+2=4x | | 675=(x+6)(x-4)(x) | | 9-5(x-1)=2(x+5) | | 2x-46+80=270 | | 350=15m+100 | | -1+3r=14 | | 675=(x+6)(x-4) |

Equations solver categories