2x(2x+3)+2x=(3x+5)=

Simple and best practice solution for 2x(2x+3)+2x=(3x+5)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(2x+3)+2x=(3x+5)= equation:



2x(2x+3)+2x=(3x+5)=
We move all terms to the left:
2x(2x+3)+2x-((3x+5))=0
We add all the numbers together, and all the variables
2x+2x(2x+3)-((3x+5))=0
We multiply parentheses
4x^2+2x+6x-((3x+5))=0
We calculate terms in parentheses: -((3x+5)), so:
(3x+5)
We get rid of parentheses
3x+5
Back to the equation:
-(3x+5)
We add all the numbers together, and all the variables
4x^2+8x-(3x+5)=0
We get rid of parentheses
4x^2+8x-3x-5=0
We add all the numbers together, and all the variables
4x^2+5x-5=0
a = 4; b = 5; c = -5;
Δ = b2-4ac
Δ = 52-4·4·(-5)
Δ = 105
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{105}}{2*4}=\frac{-5-\sqrt{105}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{105}}{2*4}=\frac{-5+\sqrt{105}}{8} $

See similar equations:

| 5(23-10r)=15 | | 5*1.8y=9y | | 3+5(x-1)=16+3x | | 2a+2/3=8 | | 2(4−3x)=8x−13 | | 225-4x=62 | | 5(3x-4)-x=8 | | 3-(23+15n)=25 | | 20x-4=168÷x | | 0.2=14-(5.6+x) | | 2x+5(x-1)=6-3x | | 6–y=2y–6 | | .2=(14-(5.6+x) | | 2x=5(x-1)=6-3x | | x2+5x–104=0 | | 2y+8=3+5 | | 3e=3÷4 | | 7+x=0.54x-2) | | H(-2)=-x^2-5x | | 5z-14=2(-14-z) | | 7x+21=42-6+4x | | 17-3.z=5+z | | 20=1/2(8x+8+20-2x) | | -(4x-4)+5x=2x+8 | | 17-3.z=5.z | | 3x+=3 | | 5+x=1/6 | | -116=4(6b-1) | | -(4x-4)=5x=2x=8 | | 2/3x+15=I7 | | 3x-6=(-9)/3+12 | | 2x+3=0.5*x |

Equations solver categories