2x(2x+7)+3(3x-5)=3(4x-5)-1

Simple and best practice solution for 2x(2x+7)+3(3x-5)=3(4x-5)-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(2x+7)+3(3x-5)=3(4x-5)-1 equation:



2x(2x+7)+3(3x-5)=3(4x-5)-1
We move all terms to the left:
2x(2x+7)+3(3x-5)-(3(4x-5)-1)=0
We multiply parentheses
4x^2+14x+9x-(3(4x-5)-1)-15=0
We calculate terms in parentheses: -(3(4x-5)-1), so:
3(4x-5)-1
We multiply parentheses
12x-15-1
We add all the numbers together, and all the variables
12x-16
Back to the equation:
-(12x-16)
We add all the numbers together, and all the variables
4x^2+23x-(12x-16)-15=0
We get rid of parentheses
4x^2+23x-12x+16-15=0
We add all the numbers together, and all the variables
4x^2+11x+1=0
a = 4; b = 11; c = +1;
Δ = b2-4ac
Δ = 112-4·4·1
Δ = 105
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-\sqrt{105}}{2*4}=\frac{-11-\sqrt{105}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+\sqrt{105}}{2*4}=\frac{-11+\sqrt{105}}{8} $

See similar equations:

| 19.56-10.9u+18.1u=5u-4.64 | | 8+4u=-6 | | 3(x-8)-6=25x-118 | | 0.3x+9=0.5x | | -37=5u-7 | | y=4y+20= | | 1.2n+3.4n=1.2 | | x6=4 | | M=x+55 | | -19n+20=9+10n+11 | | 2x/3+4x/5+2=-4 | | M=2x+139 | | 205=130-v | | -20d=-19d-18 | | 144-w=190 | | 2m-17+1=-16m+20 | | 50=65p=90+45p | | 5x+2(x+2)=44 | | 13x^+7x=0 | | 17x+18+x=180 | | 15-20b=14b-19 | | 204=71-w | | 16=6x+5-1 | | f/6-24=-26 | | 5y-535=y | | 8y+2y=8y-15 | | -3+w=21 | | 50+65p=90=45p | | A=(4x-7)(3+8x) | | -6=-x+1/2 | | 3/4c=21. | | 5-x/8=1/4x-5/3 |

Equations solver categories