2x(2x-10)-8=-2(14-3x)

Simple and best practice solution for 2x(2x-10)-8=-2(14-3x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(2x-10)-8=-2(14-3x) equation:



2x(2x-10)-8=-2(14-3x)
We move all terms to the left:
2x(2x-10)-8-(-2(14-3x))=0
We add all the numbers together, and all the variables
2x(2x-10)-(-2(-3x+14))-8=0
We multiply parentheses
4x^2-20x-(-2(-3x+14))-8=0
We calculate terms in parentheses: -(-2(-3x+14)), so:
-2(-3x+14)
We multiply parentheses
6x-28
Back to the equation:
-(6x-28)
We get rid of parentheses
4x^2-20x-6x+28-8=0
We add all the numbers together, and all the variables
4x^2-26x+20=0
a = 4; b = -26; c = +20;
Δ = b2-4ac
Δ = -262-4·4·20
Δ = 356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{356}=\sqrt{4*89}=\sqrt{4}*\sqrt{89}=2\sqrt{89}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{89}}{2*4}=\frac{26-2\sqrt{89}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{89}}{2*4}=\frac{26+2\sqrt{89}}{8} $

See similar equations:

| x*12*0,05*0,16=200 | | x-40•189+321•x=74040 | | 12/15(5/15n+10/15)=20/15 | | X-40•189+321x=74040 | | 25=x÷6 | | 4x+10=7x-27 | | -x^2+8x-21=0 | | 10=-16t^2+27t-10 | | (X-6)=x-x+46 | | 54=14u-5u | | 3x+16=7x-1 | | -3-5x+2x=21 | | x²-7x-34=10 | | 5x=(3x-6/5) | | 4x+x-9=9 | | 10x—7=5(x+1) | | (3x-6)=(4x-6) | | 1.8/4=x/6 | | 5h-5h+h-1=8 | | 131-(6x+11)=6(x+7)+x | | -1x+-15=-11 | | -18h+19h=10 | | 28-2(5a-3)=471.3-1.3-2.58.1 | | 40x-12=100 | | (3x^2+5)^2-(-2x)^2=0 | | 16m-16m-m=2 | | 11z-9z-z=19 | | .2(4x−3)−8=4+2x | | 56=-4x+12+2x | | 2(u+4)=-6u+16 | | 7x^2+15x-5=0 | | 35p+-19=16 |

Equations solver categories