2x(3+x)3=7x(2+x)2

Simple and best practice solution for 2x(3+x)3=7x(2+x)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(3+x)3=7x(2+x)2 equation:



2x(3+x)3=7x(2+x)2
We move all terms to the left:
2x(3+x)3-(7x(2+x)2)=0
We add all the numbers together, and all the variables
2x(x+3)3-(7x(x+2)2)=0
We multiply parentheses
6x^2+18x-(7x(x+2)2)=0
We calculate terms in parentheses: -(7x(x+2)2), so:
7x(x+2)2
We multiply parentheses
14x^2+28x
Back to the equation:
-(14x^2+28x)
We get rid of parentheses
6x^2-14x^2+18x-28x=0
We add all the numbers together, and all the variables
-8x^2-10x=0
a = -8; b = -10; c = 0;
Δ = b2-4ac
Δ = -102-4·(-8)·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10}{2*-8}=\frac{0}{-16} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10}{2*-8}=\frac{20}{-16} =-1+1/4 $

See similar equations:

| 4x3+30+8=34 | | 3.75x=6x-10 | | 2/7x-8+6x=120/7 | | 5m+2=10m+6 | | 5m+7=2m+20 | | x^2-4/x-1=0 | | y=90+30=180 | | 6m-2m+7m=30 | | 14(14+12)=13(13+x) | | 13(13+x)=14(14+12) | | -5(x+2)=-5x+10 | | -5(x+2)=-5x | | X+1/2x+2x-7=2101 | | 6(w-5)=9w-12 | | 50/x^2-25=0 | | x+2/5-1=1 | | 0=0.04x^2-3x+228 | | 5t^2-8,49t-20=0 | | 9(2x-4)=6(x+2 | | 12(m-24)=3m-3 | | 31/8÷(x−47/28)=17/18+15/6 | | 0=0.04x^2+64-3x+164 | | 0=0.04x^2-3x+238 | | 32=-8w+6(w+2) | | 10(x+1)=-20 | | 5x+2(4/3)=1 | | 5y=6-4 | | 7x+8=-x^2 | | 6n^2=-48n | | (9-u)(4u+3)=0 | | 3x+2(x)+1=2(-x)+7 | | 14x-4=180 |

Equations solver categories