2x(3x-1)=3(4x+2)

Simple and best practice solution for 2x(3x-1)=3(4x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(3x-1)=3(4x+2) equation:



2x(3x-1)=3(4x+2)
We move all terms to the left:
2x(3x-1)-(3(4x+2))=0
We multiply parentheses
6x^2-2x-(3(4x+2))=0
We calculate terms in parentheses: -(3(4x+2)), so:
3(4x+2)
We multiply parentheses
12x+6
Back to the equation:
-(12x+6)
We get rid of parentheses
6x^2-2x-12x-6=0
We add all the numbers together, and all the variables
6x^2-14x-6=0
a = 6; b = -14; c = -6;
Δ = b2-4ac
Δ = -142-4·6·(-6)
Δ = 340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{340}=\sqrt{4*85}=\sqrt{4}*\sqrt{85}=2\sqrt{85}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{85}}{2*6}=\frac{14-2\sqrt{85}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{85}}{2*6}=\frac{14+2\sqrt{85}}{12} $

See similar equations:

| x-10=7x+32 | | -8(-4-3x)=39 | | 24=4+b | | Y=-2.5x+34 | | 15x+10=70+7x+4 | | 0.6y-0.4+0.1y=-0.98 | | -15+5m=m-3 | | 2x-4+7=3x+12 | | -7n+14=-2n-6 | | (2x-13)+(2x+8)+(x)=180 | | x=20+47 | | 10+4K=1+k | | 125=12x+11+7x | | 12-2x=-3x+2 | | B+2=-10-b | | 125=12x+11+7 | | 7=2(x-2)-3x | | -12-7a=-6-5a | | -2x+8x=6+4x | | 4(2y+4)=48 | | (2x-11)+(2x+1)+(x)=180 | | 4n²-8n=0 | | 2r+4=-8-2r | | 10x+13=9x-20 | | -4n-7=-13-5n | | 110=4x-4+15+7x | | 4m=48è | | -6b+11=3-4b | | 110=15+7x+4x-4 | | 2x=11x-45 | | 6n-12=-2+8n | | x-4=3/5 |

Equations solver categories