If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x(4x+25)=0
We multiply parentheses
8x^2+50x=0
a = 8; b = 50; c = 0;
Δ = b2-4ac
Δ = 502-4·8·0
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-50}{2*8}=\frac{-100}{16} =-6+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+50}{2*8}=\frac{0}{16} =0 $
| 1000x+x=25 | | -8x-35=-4x+45 | | b2=16 | | b2=1210 | | 3x^2+7x=133 | | 2,5x=134 | | 7x-x+4=-30 | | 2x-3x=320 | | x-30=4x-60 | | 32x²+13x-90=0 | | 5a+30=-6a+20 | | 4y-6y=60 | | X²+15x-14=0 | | 2x+3=2.5x-7 | | 5x+10x=10 | | 90-8x=10x | | x^2-48x+496=0 | | 2(y+1)=20 | | b+98=3 | | 6(p+1)=12 | | x-3=2(x+5)2x+2 | | 5x+0.5x=180 | | 14n-2=34 | | 43/10-(22/5x+51/2=(-33/5x+11/5) | | 43/10-(22/5x+51/2=(-33/5x+11/5 | | a/8=14 | | 3/4(20y-8)+5=1/2y+1/4(20y+8 | | 2(t+1)=12 | | 3/5y-4/y=2/5 | | 16~y=9 | | 8t+2=18 | | c8+9=9 |