If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x(4x+28)=180
We move all terms to the left:
2x(4x+28)-(180)=0
We multiply parentheses
8x^2+56x-180=0
a = 8; b = 56; c = -180;
Δ = b2-4ac
Δ = 562-4·8·(-180)
Δ = 8896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8896}=\sqrt{64*139}=\sqrt{64}*\sqrt{139}=8\sqrt{139}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-8\sqrt{139}}{2*8}=\frac{-56-8\sqrt{139}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+8\sqrt{139}}{2*8}=\frac{-56+8\sqrt{139}}{16} $
| -5x=-2x^2+1 | | a*a+49=169 | | 74-v=187 | | 11=u+79 | | -5n^2=-220 | | 5(1+n)=-40 | | .3x=10.31 | | 4x+3x+90=180 | | 0=-2(x-2) | | 2x+6=3x+25 | | 10z−7z−11z−–15z=–14 | | 5q=31,q=13 | | 9x+13=85/ | | 0=3y^2+8y+4 | | Y2-8y+16=0 | | Y=3x² | | m-35=-87 | | W-9=0,w=9 | | 16x+11=5x+31 | | x^2+2x-1=16 | | 5+x=47,x=52 | | x=36/5 | | (-16+2x)/5=-34 | | d-4=19,d=15 | | 5(x−3)+6=5x−10 | | x+x=6x-3 | | -0.12+0.12y-1=0.095y-0.9275 | | 2x+(-17)=-39 | | 21-h=15,h=6 | | 33=32x-32 | | x/6.3=2.1 | | -6(1-m=9-2m |