2x(5-3x)=(7x-4)-(8x-9)

Simple and best practice solution for 2x(5-3x)=(7x-4)-(8x-9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(5-3x)=(7x-4)-(8x-9) equation:



2x(5-3x)=(7x-4)-(8x-9)
We move all terms to the left:
2x(5-3x)-((7x-4)-(8x-9))=0
We add all the numbers together, and all the variables
2x(-3x+5)-((7x-4)-(8x-9))=0
We multiply parentheses
-6x^2+10x-((7x-4)-(8x-9))=0
We calculate terms in parentheses: -((7x-4)-(8x-9)), so:
(7x-4)-(8x-9)
We get rid of parentheses
7x-8x-4+9
We add all the numbers together, and all the variables
-1x+5
Back to the equation:
-(-1x+5)
We get rid of parentheses
-6x^2+10x+1x-5=0
We add all the numbers together, and all the variables
-6x^2+11x-5=0
a = -6; b = 11; c = -5;
Δ = b2-4ac
Δ = 112-4·(-6)·(-5)
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-1}{2*-6}=\frac{-12}{-12} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+1}{2*-6}=\frac{-10}{-12} =5/6 $

See similar equations:

| 7x÷4=16 | | X+8-2x+6x=40 | | 4(4x+6)+x=80 | | 24/5w=141/5 | | y=10(1+0.4)^4 | | y=10(1+0.4)^6 | | 50x+70+10x=80 | | 6x(2x+1)=-138 | | 27x+x^2-160=0 | | 8=2h-(-3) | | 50x+70+10x=80x | | 50x+20x-(3x-5)=250 | | 3g-(-7.72)=13.72 | | 48x+x^2-720=0 | | 5x+(-2)=60 | | 3/8f+1/2=6(1/16f-3 | | 2x+70=80 | | 12=1/2*8(2x-7) | | 100x-x^2-2400=0 | | X=y2+24y+70 | | n/16=9/n | | 2^(3^x)=5 | | 1.5/4x-1=0.4/x+4 | | x²-6.88x-4.602=0 | | 8x^2-14=15 | | x2+7x+368=0 | | 15.1=4.3-x | | 2(a-6)=4a-2(2a+12) | | 0.17+0.025n=0.11 | | 0.17+0.025n=011 | | 11c+8=c | | 21w-(-54)=726 |

Equations solver categories