2x(6-2x)-4=4x(6-2x)+4

Simple and best practice solution for 2x(6-2x)-4=4x(6-2x)+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(6-2x)-4=4x(6-2x)+4 equation:



2x(6-2x)-4=4x(6-2x)+4
We move all terms to the left:
2x(6-2x)-4-(4x(6-2x)+4)=0
We add all the numbers together, and all the variables
2x(-2x+6)-(4x(-2x+6)+4)-4=0
We multiply parentheses
-4x^2+12x-(4x(-2x+6)+4)-4=0
We calculate terms in parentheses: -(4x(-2x+6)+4), so:
4x(-2x+6)+4
We multiply parentheses
-8x^2+24x+4
Back to the equation:
-(-8x^2+24x+4)
We get rid of parentheses
-4x^2+8x^2-24x+12x-4-4=0
We add all the numbers together, and all the variables
4x^2-12x-8=0
a = 4; b = -12; c = -8;
Δ = b2-4ac
Δ = -122-4·4·(-8)
Δ = 272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{272}=\sqrt{16*17}=\sqrt{16}*\sqrt{17}=4\sqrt{17}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{17}}{2*4}=\frac{12-4\sqrt{17}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{17}}{2*4}=\frac{12+4\sqrt{17}}{8} $

See similar equations:

| 13m*2+19m=0 | | 6x+-4+9=-5x | | 78=-2m+-6+m | | D/n+6=9 | | c+77=8c | | 10=3n-(-1) | | 10=3n—1 | | -11=d/3+-8 | | 2+x/8=-2 | | 9x–7x=22 | | 20k+20=19k | | 2(3v+)=46 | | 19-u=8u-17 | | 7m-4=-14+19+10m | | -7c+8=-10-10c | | 2(7-3(1-n))+7n=-2+2(6(n+1)-3n) | | 3+-9g=-7+g | | -2q-8=-5q+10+9 | | 7-9r-6=1-2r | | 8x+20-2x=(2x+7)-8 | | -5x+3=5x+19 | | 3.25×x=20 | | 16=2(-3x-4) | | 6+-2h-6=-5h | | 6+2h-6=-5h | | X=1290000/12.9x | | -0.5h=28 | | 7m+2=3m-2 | | (6x+9)(4x-19)=180 | | -8+-6y=-8+-2y | | a−3=(8+24a)4 | | 3p+17=-11-11p |

Equations solver categories