If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 2x(6x + 4) + -6 + 2x = 3(4x + 3) + 1 Reorder the terms: 2x(4 + 6x) + -6 + 2x = 3(4x + 3) + 1 (4 * 2x + 6x * 2x) + -6 + 2x = 3(4x + 3) + 1 (8x + 12x2) + -6 + 2x = 3(4x + 3) + 1 Reorder the terms: -6 + 8x + 2x + 12x2 = 3(4x + 3) + 1 Combine like terms: 8x + 2x = 10x -6 + 10x + 12x2 = 3(4x + 3) + 1 Reorder the terms: -6 + 10x + 12x2 = 3(3 + 4x) + 1 -6 + 10x + 12x2 = (3 * 3 + 4x * 3) + 1 -6 + 10x + 12x2 = (9 + 12x) + 1 Reorder the terms: -6 + 10x + 12x2 = 9 + 1 + 12x Combine like terms: 9 + 1 = 10 -6 + 10x + 12x2 = 10 + 12x Solving -6 + 10x + 12x2 = 10 + 12x Solving for variable 'x'. Reorder the terms: -6 + -10 + 10x + -12x + 12x2 = 10 + 12x + -10 + -12x Combine like terms: -6 + -10 = -16 -16 + 10x + -12x + 12x2 = 10 + 12x + -10 + -12x Combine like terms: 10x + -12x = -2x -16 + -2x + 12x2 = 10 + 12x + -10 + -12x Reorder the terms: -16 + -2x + 12x2 = 10 + -10 + 12x + -12x Combine like terms: 10 + -10 = 0 -16 + -2x + 12x2 = 0 + 12x + -12x -16 + -2x + 12x2 = 12x + -12x Combine like terms: 12x + -12x = 0 -16 + -2x + 12x2 = 0 Factor out the Greatest Common Factor (GCF), '2'. 2(-8 + -1x + 6x2) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(-8 + -1x + 6x2)' equal to zero and attempt to solve: Simplifying -8 + -1x + 6x2 = 0 Solving -8 + -1x + 6x2 = 0 Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. -1.333333333 + -0.1666666667x + x2 = 0 Move the constant term to the right: Add '1.333333333' to each side of the equation. -1.333333333 + -0.1666666667x + 1.333333333 + x2 = 0 + 1.333333333 Reorder the terms: -1.333333333 + 1.333333333 + -0.1666666667x + x2 = 0 + 1.333333333 Combine like terms: -1.333333333 + 1.333333333 = 0.000000000 0.000000000 + -0.1666666667x + x2 = 0 + 1.333333333 -0.1666666667x + x2 = 0 + 1.333333333 Combine like terms: 0 + 1.333333333 = 1.333333333 -0.1666666667x + x2 = 1.333333333 The x term is -0.1666666667x. Take half its coefficient (-0.08333333335). Square it (0.006944444447) and add it to both sides. Add '0.006944444447' to each side of the equation. -0.1666666667x + 0.006944444447 + x2 = 1.333333333 + 0.006944444447 Reorder the terms: 0.006944444447 + -0.1666666667x + x2 = 1.333333333 + 0.006944444447 Combine like terms: 1.333333333 + 0.006944444447 = 1.340277777447 0.006944444447 + -0.1666666667x + x2 = 1.340277777447 Factor a perfect square on the left side: (x + -0.08333333335)(x + -0.08333333335) = 1.340277777447 Calculate the square root of the right side: 1.157703666 Break this problem into two subproblems by setting (x + -0.08333333335) equal to 1.157703666 and -1.157703666.Subproblem 1
x + -0.08333333335 = 1.157703666 Simplifying x + -0.08333333335 = 1.157703666 Reorder the terms: -0.08333333335 + x = 1.157703666 Solving -0.08333333335 + x = 1.157703666 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.08333333335' to each side of the equation. -0.08333333335 + 0.08333333335 + x = 1.157703666 + 0.08333333335 Combine like terms: -0.08333333335 + 0.08333333335 = 0.00000000000 0.00000000000 + x = 1.157703666 + 0.08333333335 x = 1.157703666 + 0.08333333335 Combine like terms: 1.157703666 + 0.08333333335 = 1.24103699935 x = 1.24103699935 Simplifying x = 1.24103699935Subproblem 2
x + -0.08333333335 = -1.157703666 Simplifying x + -0.08333333335 = -1.157703666 Reorder the terms: -0.08333333335 + x = -1.157703666 Solving -0.08333333335 + x = -1.157703666 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.08333333335' to each side of the equation. -0.08333333335 + 0.08333333335 + x = -1.157703666 + 0.08333333335 Combine like terms: -0.08333333335 + 0.08333333335 = 0.00000000000 0.00000000000 + x = -1.157703666 + 0.08333333335 x = -1.157703666 + 0.08333333335 Combine like terms: -1.157703666 + 0.08333333335 = -1.07437033265 x = -1.07437033265 Simplifying x = -1.07437033265Solution
The solution to the problem is based on the solutions from the subproblems. x = {1.24103699935, -1.07437033265}Solution
x = {1.24103699935, -1.07437033265}
| 5t+3=2t+5 | | 2x-25=5x-10 | | x^3+5x^2+10x+2=0 | | 4=14x+10 | | 0.51/6 | | 10x-127=3x+76 | | (-2h^2/9)^3 | | 22-a=7 | | 2k+22=-6(-k-2)+2 | | -2v-30=-7(v-5) | | 18t+-8=1 | | 32+2x=90 | | 56-2u=25 | | 0=8t^2-5t-13 | | -10-7y=-90 | | 100/x)·X=(28/21)·X | | G(12)=9 | | -7u+4(u-8)=-26 | | t^-5/2-32=0 | | 7x+9=13x-29 | | F(12)=9 | | -0.2x^2+0.4x+0.2=0 | | (q-5)*8=64 | | 2x(13-4)-(23/23) | | 21-2x=12 | | -4(x-6)=-6x+36 | | T^-5/2=32 | | 0=16*t^2 | | -4(x-6)=-6(-k-2)+2 | | -51+3x=9x+57 | | F+9=c | | [3x-5]= |