2x(6x-6)=4(3x-2)

Simple and best practice solution for 2x(6x-6)=4(3x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(6x-6)=4(3x-2) equation:



2x(6x-6)=4(3x-2)
We move all terms to the left:
2x(6x-6)-(4(3x-2))=0
We multiply parentheses
12x^2-12x-(4(3x-2))=0
We calculate terms in parentheses: -(4(3x-2)), so:
4(3x-2)
We multiply parentheses
12x-8
Back to the equation:
-(12x-8)
We get rid of parentheses
12x^2-12x-12x+8=0
We add all the numbers together, and all the variables
12x^2-24x+8=0
a = 12; b = -24; c = +8;
Δ = b2-4ac
Δ = -242-4·12·8
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-8\sqrt{3}}{2*12}=\frac{24-8\sqrt{3}}{24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+8\sqrt{3}}{2*12}=\frac{24+8\sqrt{3}}{24} $

See similar equations:

| v+–6v+–11=4 | | 3(z+1)-5=5z+2 | | -6x+6=-3x+3 | | 120=-5x+15+3(x-5) | | 4q−11=9 | | 120=5x+15+3(x-3) | | 2/3r-2=3/5r+1/3 | | -42=-6(v-91) | | 80x=600 | | 15-2=2x+3 | | 23-8x=-1-2x | | X=-4/5y+3/4 | | 9+2n=45 | | (17x+14)^+(4x-2)^=180 | | s/6-10=-6 | | 8x+11=5x-4 | | 2(m-12)+6=22 | | 7s-22=76 | | 6f+3f+2=38 | | 91=7(h-83) | | (r-6)/3=4 | | 51.98+0.17x=57.98+0.15x | | 10(q+43)=-100 | | y/6+47=57 | | 2/5y-7=3 | | –2y−–9y=14 | | 19x+2+15x-12=6x | | 51=15+9z | | 52+2x=5 | | F=43f+2 | | 2*x-8=7 | | 5x(x-6)+8-2x=x+2x(x-11) |

Equations solver categories