2x(7x+5)=3(2x+7)+4(2x-1)

Simple and best practice solution for 2x(7x+5)=3(2x+7)+4(2x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(7x+5)=3(2x+7)+4(2x-1) equation:



2x(7x+5)=3(2x+7)+4(2x-1)
We move all terms to the left:
2x(7x+5)-(3(2x+7)+4(2x-1))=0
We multiply parentheses
14x^2+10x-(3(2x+7)+4(2x-1))=0
We calculate terms in parentheses: -(3(2x+7)+4(2x-1)), so:
3(2x+7)+4(2x-1)
We multiply parentheses
6x+8x+21-4
We add all the numbers together, and all the variables
14x+17
Back to the equation:
-(14x+17)
We get rid of parentheses
14x^2+10x-14x-17=0
We add all the numbers together, and all the variables
14x^2-4x-17=0
a = 14; b = -4; c = -17;
Δ = b2-4ac
Δ = -42-4·14·(-17)
Δ = 968
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{968}=\sqrt{484*2}=\sqrt{484}*\sqrt{2}=22\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-22\sqrt{2}}{2*14}=\frac{4-22\sqrt{2}}{28} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+22\sqrt{2}}{2*14}=\frac{4+22\sqrt{2}}{28} $

See similar equations:

| (3x-6)-2=11 | | x/2-4=8-x | | {3x-6}-2=11 | | 1x+3=3x+-5 | | -4(3x-3)=60 | | 1-1.6x=0 | | C(n,4)=15 | | 5(3+2m)=35 | | 2(2k-4)=12 | | 6x*4-3=0 | | 1-1.6x^2=0 | | 4+1x=16-2x | | n(n-1)=45 | | |5-4x|=|2x-13| | | -4(4x+3)=4 | | 1,2x-(1,8x-3,8)=4,25 | | 72+x=-8x+9 | | /-72+x=-8x+9 | | Y=5/3x-4/5 | | 15x+10=-15-20 | | -7b-32=-3b | | 10*3d=73 | | 3*10d=73 | | 2(x+2)=3(x-1) | | 36x-22=40x-78 | | 3e-4e=-5 | | 0.12=x*0.19+(1-x)*0.08 | | y+8+3=16 | | 7u+18=7-3u | | 11/10x+1/10x=2x+1/5+9/10x | | X3-9x2+20x=0 | | 48-y/7=42 |

Equations solver categories