2x(x+1)+3(x-2)=4(2-x)+6

Simple and best practice solution for 2x(x+1)+3(x-2)=4(2-x)+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(x+1)+3(x-2)=4(2-x)+6 equation:



2x(x+1)+3(x-2)=4(2-x)+6
We move all terms to the left:
2x(x+1)+3(x-2)-(4(2-x)+6)=0
We add all the numbers together, and all the variables
2x(x+1)+3(x-2)-(4(-1x+2)+6)=0
We multiply parentheses
2x^2+2x+3x-(4(-1x+2)+6)-6=0
We calculate terms in parentheses: -(4(-1x+2)+6), so:
4(-1x+2)+6
We multiply parentheses
-4x+8+6
We add all the numbers together, and all the variables
-4x+14
Back to the equation:
-(-4x+14)
We add all the numbers together, and all the variables
2x^2+5x-(-4x+14)-6=0
We get rid of parentheses
2x^2+5x+4x-14-6=0
We add all the numbers together, and all the variables
2x^2+9x-20=0
a = 2; b = 9; c = -20;
Δ = b2-4ac
Δ = 92-4·2·(-20)
Δ = 241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{241}}{2*2}=\frac{-9-\sqrt{241}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{241}}{2*2}=\frac{-9+\sqrt{241}}{4} $

See similar equations:

| 5/4-7y=23/4 | | 2^x=562.949.953.421.312 | | 4/5*y=3/7 | | x-2/5=3/7 | | x-1/9=3/4 | | 1/9+x=8/9 | | 8/10+x=9/10 | | 2/10+x=9/10 | | 5y+4=7y-3 | | 21=4+2x-7+x | | 2x+7+4+x=21 | | 400x=40 | | (9)(3)=x+18 | | 2x+3+38=3x | | 2x+3+3x+38=80 | | 40-2x=4-6x | | 80+200d=120+15d | | 3-1/10x=7 | | 21=6/11x+3 | | 5(x-6)=15(x-8) | | 6x2-40x-14=0 | | 72.2=8.8x+x^2 | | 896=2x^+24x | | x=65+x+7x | | x=34x+2-x | | x=34x+2 | | 57+x+23=180. | | (120/x)/6=60 | | (13x-4.2)+39=180 | | -4/9a=5/6 | | -2.1=y/2+1.1 | | 15.1=-4.1+6u |

Equations solver categories