If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x(x+1)=(x-2)(x-2)
We move all terms to the left:
2x(x+1)-((x-2)(x-2))=0
We multiply parentheses
2x^2+2x-((x-2)(x-2))=0
We multiply parentheses ..
2x^2-((+x^2-2x-2x+4))+2x=0
We calculate terms in parentheses: -((+x^2-2x-2x+4)), so:We add all the numbers together, and all the variables
(+x^2-2x-2x+4)
We get rid of parentheses
x^2-2x-2x+4
We add all the numbers together, and all the variables
x^2-4x+4
Back to the equation:
-(x^2-4x+4)
2x^2+2x-(x^2-4x+4)=0
We get rid of parentheses
2x^2-x^2+2x+4x-4=0
We add all the numbers together, and all the variables
x^2+6x-4=0
a = 1; b = 6; c = -4;
Δ = b2-4ac
Δ = 62-4·1·(-4)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{13}}{2*1}=\frac{-6-2\sqrt{13}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{13}}{2*1}=\frac{-6+2\sqrt{13}}{2} $
| 5(5x+2)^2−15=30 | | (8y-16)°=72 | | 24(2h-4)=12(-4h+8) | | 2x-13/2x+4=5x/x+1 | | 25=29t-4.9t2 | | X+7+5=3x | | 5(5x+2)^2-15=30 | | 9x-16=3(2x-6)+3x+2 | | √x²-4=8 | | 2=k1/3 | | 5y–45=–3+3y | | -7(7x-4)+8=49x+36 | | 7x-(2x+13)=7 | | 4m=7+3 | | 12x^2+20x-400=0 | | 1+4(8c-6)=-6c-10-1 | | 3^2=9x-2x=7 | | -3+m/4=7 | | 25+x=(75+x)(0.85) | | 12+x=(25+x)(0.6) | | 2k+6=5k-3 | | X-0.85x=63-25 | | 5/4n=-15/8 | | -90+12n=-n^2 | | X-0.6x=15-12 | | U+3/u=-6 | | 0.15x=38 | | -7+4x=2x-4 | | 2.2+10m=8.37 | | −14x−5= −10x−45− | | -4x+1+-9x=16 | | x+x+13+4x=85 |