If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x(x+10)=180
We move all terms to the left:
2x(x+10)-(180)=0
We multiply parentheses
2x^2+20x-180=0
a = 2; b = 20; c = -180;
Δ = b2-4ac
Δ = 202-4·2·(-180)
Δ = 1840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1840}=\sqrt{16*115}=\sqrt{16}*\sqrt{115}=4\sqrt{115}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{115}}{2*2}=\frac{-20-4\sqrt{115}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{115}}{2*2}=\frac{-20+4\sqrt{115}}{4} $
| (92+77+c)/3=84 | | 1+¾(x-2)=⅔(x+1 | | 2u^2+4=94 | | x-0.13x=20.88 | | 2÷7=x | | 4x^2+x+75=180 | | -2(5x-2)+3x+1=19 | | 63=x+19 | | 82•0.65^x=38 | | -20+-4k=-92 | | 16x=514 | | 20y-(84)= | | 0.3+0.417x-2=6.6 | | x/x+3=12/20 | | 37.51+x=74.84 | | f/5+36=41 | | –3t=9−4t | | 6=1/4k | | -4x+11+12x=35 | | 2.5/x=7/2 | | 7=49/k | | 3u-62=2u+42 | | 10b+24=64 | | 17n=50 | | 12j+13j−–13=–12 | | 6x+3+5=-24-6x | | 82•0,65^x=38 | | 6x+3+5=-24x | | x÷.10=37 | | 37+5x=-3+5(2x+6) | | 6x+3+5=-24-x | | 3(2x+1)+5=-6(4-x) |