If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x(x+14)=(x-3)(x-3)
We move all terms to the left:
2x(x+14)-((x-3)(x-3))=0
We multiply parentheses
2x^2+28x-((x-3)(x-3))=0
We multiply parentheses ..
2x^2-((+x^2-3x-3x+9))+28x=0
We calculate terms in parentheses: -((+x^2-3x-3x+9)), so:We add all the numbers together, and all the variables
(+x^2-3x-3x+9)
We get rid of parentheses
x^2-3x-3x+9
We add all the numbers together, and all the variables
x^2-6x+9
Back to the equation:
-(x^2-6x+9)
2x^2+28x-(x^2-6x+9)=0
We get rid of parentheses
2x^2-x^2+28x+6x-9=0
We add all the numbers together, and all the variables
x^2+34x-9=0
a = 1; b = 34; c = -9;
Δ = b2-4ac
Δ = 342-4·1·(-9)
Δ = 1192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1192}=\sqrt{4*298}=\sqrt{4}*\sqrt{298}=2\sqrt{298}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-2\sqrt{298}}{2*1}=\frac{-34-2\sqrt{298}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+2\sqrt{298}}{2*1}=\frac{-34+2\sqrt{298}}{2} $
| 40x+3=30x-57 | | 0=p²-7p | | 7p2-2=54p | | 175x-100x+48750=50250-175x | | -2/3=y+3/8 | | 7g=7/8 | | 7p2-2=54 | | x/87=150/100 | | 87/x=100/150 | | (-2x²)³=(-2)³(x²)³ | | x³+10x²+100=0 | | 87/100=x/150 | | 14=2b+b^2 | | 11x+8=-2+9 | | x^2+14x+48=100 | | 4x-5=20x+1 | | 3x+11/7+x+28/6=11 | | 12x(-7)=41 | | x2=7x+3 | | 3x^+6x=0 | | 3x-8=10x+20 | | 3a=5a-8/ | | 18y-22=48 | | 3a=5a-8/5 | | k+7=289 | | 16n=1004n+1= | | 7p/3+6=1 | | 320=-49t+9.8/2t² | | -4.9t²+49t+320=0 | | 8(2x+8)=112 | | 8(2x-8)=112 | | 20x²-15x-10=0 |