2x(x+3)+12=6-2(3x-5)

Simple and best practice solution for 2x(x+3)+12=6-2(3x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(x+3)+12=6-2(3x-5) equation:



2x(x+3)+12=6-2(3x-5)
We move all terms to the left:
2x(x+3)+12-(6-2(3x-5))=0
We multiply parentheses
2x^2+6x-(6-2(3x-5))+12=0
We calculate terms in parentheses: -(6-2(3x-5)), so:
6-2(3x-5)
determiningTheFunctionDomain -2(3x-5)+6
We multiply parentheses
-6x+10+6
We add all the numbers together, and all the variables
-6x+16
Back to the equation:
-(-6x+16)
We get rid of parentheses
2x^2+6x+6x-16+12=0
We add all the numbers together, and all the variables
2x^2+12x-4=0
a = 2; b = 12; c = -4;
Δ = b2-4ac
Δ = 122-4·2·(-4)
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{11}}{2*2}=\frac{-12-4\sqrt{11}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{11}}{2*2}=\frac{-12+4\sqrt{11}}{4} $

See similar equations:

| (4x+1)/6=3.5 | | 2x-4/3x+9=0 | | 9x+21=25+7x+18 | | 5a=a+21 | | 3u+6u=18 | | 75-x/6=68 | | 10y+1=6y+13 | | 55•x/55=7 | | 2x+4x=128 | | 2x+18=x+46 | | 6x-3(4-2x)+5=23-2x-3(2+5x) | | x+2x+3x=25+5x | | 4x+2x=128 | | 2x/1=9 | | 3x^-11x+6=0 | | -1x+2x+34=-15x-32 | | 2^(0.4)=y | | 5/x+8/x+6=1 | | 3/4x-6=5/2x+7 | | 5(x-2)=-x+32 | | 22+8x=70 | | 3,5/x-5,4=15,6 | | 3,5×x-5,4=15,6 | | 6x+7/5=2x–4 | | 2x-5-9=0 | | 3x+x=2x+21 | | 8y-20=44 | | 180=0.5×3x+2+x+4×2x | | 4040-4y=4 | | 5x=27−4x | | 3x+6=-30-16x | | 2x+2(57+x)=714 |

Equations solver categories