2x(x+4)-x/3=x-1

Simple and best practice solution for 2x(x+4)-x/3=x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(x+4)-x/3=x-1 equation:



2x(x+4)-x/3=x-1
We move all terms to the left:
2x(x+4)-x/3-(x-1)=0
We multiply parentheses
2x^2+8x-x/3-(x-1)=0
We get rid of parentheses
2x^2+8x-x/3-x+1=0
We multiply all the terms by the denominator
2x^2*3+8x*3-x-x*3+1*3=0
We add all the numbers together, and all the variables
2x^2*3-1x+8x*3-x*3+3=0
Wy multiply elements
6x^2-1x+24x-3x+3=0
We add all the numbers together, and all the variables
6x^2+20x+3=0
a = 6; b = 20; c = +3;
Δ = b2-4ac
Δ = 202-4·6·3
Δ = 328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{328}=\sqrt{4*82}=\sqrt{4}*\sqrt{82}=2\sqrt{82}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{82}}{2*6}=\frac{-20-2\sqrt{82}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{82}}{2*6}=\frac{-20+2\sqrt{82}}{12} $

See similar equations:

| 6x2+12x+36=180 | | 5x+13=36 | | 9(x+4)=4x-10 | | 2.4+5a=7a+0.6 | | x²-9x-2=-20 | | 2.40+5a=7a+0.6 | | 8x-13=3(4+x) | | 13x=89 | | 4.x+30=50 | | 3n/2=36 | | 2(3z)+2*z=76 | | -6(p+7)=38-4p | | 2x+5=-5x+15 | | 4x+22=8x+34 | | -62r=10 | | 7x+33=8 | | 6x−8=46 | | -4(6-3n)=-36+8n | | (X-1/3)+(x+5/4)=1/2 | | 2x-5x+13+6=36 | | -5=g/2-6 | | 2*z+2(3z)=76 | | 3(v-4)-1=-4(-5v+4)-8 | | -28=-4w+3(5w+9) | | -19+7r+54=5(7+7r) | | f(7)=7^2-9(7) | | n/2+7=16 | | 5z-4=6z-2z | | 4x-7-6x=5-4x=4 | | (6+i)(6+i)=0 | | -5(k+9)=-70 | | 28=2(v+8)-6v |

Equations solver categories