If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x(x+4)=72
We move all terms to the left:
2x(x+4)-(72)=0
We multiply parentheses
2x^2+8x-72=0
a = 2; b = 8; c = -72;
Δ = b2-4ac
Δ = 82-4·2·(-72)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{10}}{2*2}=\frac{-8-8\sqrt{10}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{10}}{2*2}=\frac{-8+8\sqrt{10}}{4} $
| 3/4(w)=6 | | 30/x+7=10 | | 1x+1x*0.03=25000 | | -1/2w+5=6w+18 | | x=5-6 | | 24+2x+-x^2=0 | | 2•2x=8•8 | | 60x+2.25=120 | | 395=t-217 | | 56=10-18+x² | | 3y-24=-12 | | 3x+1-x/4=3 | | 5x-9-4=8-3x+7 | | 50=8(7-7r)-(4r+6) | | 19x+15=-6 | | x•.13=104 | | 56÷(-8)=a0 | | -31/3+x=-12/5 | | 8/9p=10 | | 3x+0.85=32 | | (-7)(-5)=a0 | | 8+2z-9/8=6 | | 8x+9÷4=8 | | 8+2z-9÷8=6 | | 2y-4y=15 | | 45+15x=3-6x | | 4-(3p-3)=p-10 | | 2x-5x+7x-5x=-x | | C=10-3x | | 2^2+56=23v | | 2x+3x+4x=`180 | | 2q+1=3 |