If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x(x+5)=24
We move all terms to the left:
2x(x+5)-(24)=0
We multiply parentheses
2x^2+10x-24=0
a = 2; b = 10; c = -24;
Δ = b2-4ac
Δ = 102-4·2·(-24)
Δ = 292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{292}=\sqrt{4*73}=\sqrt{4}*\sqrt{73}=2\sqrt{73}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{73}}{2*2}=\frac{-10-2\sqrt{73}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{73}}{2*2}=\frac{-10+2\sqrt{73}}{4} $
| 1.000^8=10w | | 5(3z-11)=5 | | 2z+3=26 | | 21x^2-25x+10=4 | | 2x+4+3x+2=21 | | 3x+4.84=5.4. | | 1,250+27.5w=1,400+20w | | 3(2x+4)-2x=20 | | (x/5)+(x/3)=356 | | 9x+8=8x+x+4+4 | | 4(2x+1)-8x=1 | | 12x-2x=10x+8 | | (x/5)+(x/3)=336 | | 50x+5.50=18.50x+7.75 | | 7x-8+3x-12=30 | | j-19=2 | | 8x+5=2(4x+5) | | 21x^2-25x-10=4 | | 2w+11=1.5+14;6 | | 121=p^2 | | 2w+11=1.5+14 | | -3=11+6x-12x | | 7x+6+42x-4=130 | | 5x^2-10x-6=10 | | 6(3x-5)=2(4x-7) | | -62=t-15 | | 8n-13n=15 | | 40-t=7 | | 100=t^2 | | x-160=11x+188 | | -7(7x-4)=-49x-28 | | 180=45+a+a |