If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x(x+5)=40
We move all terms to the left:
2x(x+5)-(40)=0
We multiply parentheses
2x^2+10x-40=0
a = 2; b = 10; c = -40;
Δ = b2-4ac
Δ = 102-4·2·(-40)
Δ = 420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{420}=\sqrt{4*105}=\sqrt{4}*\sqrt{105}=2\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{105}}{2*2}=\frac{-10-2\sqrt{105}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{105}}{2*2}=\frac{-10+2\sqrt{105}}{4} $
| 5x+2x=45 | | 24=3-a7 | | 0=6-3t | | 3+6n=8n-7 | | 7x-7=60 | | (0,25)^x=64^2-x | | 5x+3(x-2)=4x+1 | | 7x-(2x-5)=45 | | 6x−3=−5x+7 | | 7^2x-1=1 | | 6y+2=y-13 | | 7=-6+c | | 27=3s–3 | | -58=b/5-66 | | x-12+5x-27+2x+3=180 | | -3r-8=-35 | | 40+60+9x-1=180 | | 63=6h+15 | | x2-12x+35=x-7 | | 10q-8=7q+4 | | (x-5)(4x-8)=0 | | 5m+2m=-14 | | 7(13)-31+4y+27+63=180 | | 22=x+15 | | 4y-6=19y+24 | | 4g+4=12 | | 150k-100=2050 | | 3w+5=2w+9 | | j/2-2=1 | | 7x-31+5x-8+63=180 | | Y-5=1/2(x+4 | | y-4/2=100 |