2x(x-3)+(2x-5)(x-4)/(x-4)(x-3)=25/3

Simple and best practice solution for 2x(x-3)+(2x-5)(x-4)/(x-4)(x-3)=25/3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(x-3)+(2x-5)(x-4)/(x-4)(x-3)=25/3 equation:



2x(x-3)+(2x-5)(x-4)/(x-4)(x-3)=25/3
We move all terms to the left:
2x(x-3)+(2x-5)(x-4)/(x-4)(x-3)-(25/3)=0
Domain of the equation: (x-4)(x-3)!=0
We move all terms containing x to the left, all other terms to the right
x-4)(x!=3
x∈R
We add all the numbers together, and all the variables
2x(x-3)+(2x-5)(x-4)/(x-4)(x-3)-(+25/3)=0
We multiply parentheses
2x^2-6x+(2x-5)(x-4)/(x-4)(x-3)-(+25/3)=0
We get rid of parentheses
2x^2-6x+(2x-5)(x-4)/(x-4)(x-3)-25/3=0
We multiply parentheses ..
2x^2+(+2x^2-8x-5x+20)/(x-4)(x-3)-6x-25/3=0
We calculate fractions
2x^2+(-25x^2+175x-300)/(3x^2-21x+36)-6x+(6x^2-39x+60)/(3x^2-21x+36)=0
We multiply all the terms by the denominator
(-25x^2+175x-300)+2x^2*(3x^2-21x+36)-6x*(3x^2-21x+36)+(6x^2-39x+60)=0
We multiply parentheses
(-25x^2+175x-300)+2x^2*(3x^2-21x+36)-18x^3+126x^2-216x+(6x^2-39x+60)=0
We get rid of parentheses
-25x^2+2x^2*(3x^2-21x+36)-18x^3+126x^2+6x^2+175x-216x-39x-300+60=0
We do not support expression: x^3

See similar equations:

| 1/3m+1=-7- | | (10x+7)+(10x+3)=180 | | -5x-9x=-12 | | 1/2m+3(1/2m+2)=1/2m+4 | | a=4(3.14)13^2 | | 2x2+5-3=0 | | 6+5(a+1)=36 | | 11=c|-5+8 | | 30x2+11x+1=0 | | 5000=1.07x | | 2/3x+1/5x=180 | | 5w/2-7=13 | | 2/3x+x/5=180 | | 16+3x=58 | | 0.10x+0.45(70)=34.5 | | 16+3x+13=36 | | 4=0.9k=4 | | x/3=x/8=4/3 | | 0.25(2x-1)=-1/7-1/4 | | 3p÷7-5=-2 | | 0.5(2x-1)=0.14-0.25 | | 0.25(2x-1)=1/7-1/4 | | 5/8y-6=-3 | | -12+15=-3(x+7) | | 1+17=-2(3x-9) | | 4(2x+9)=-17+21 | | n-2/7=3 | | x+2x=206 | | 4.27=X/0.1-x | | 4z-(9z+4)=-19 | | 5w+12.17=32 | | 2(7y-6)-10y=16 |

Equations solver categories