2x(x-3)=(1-x)(x+4)

Simple and best practice solution for 2x(x-3)=(1-x)(x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(x-3)=(1-x)(x+4) equation:



2x(x-3)=(1-x)(x+4)
We move all terms to the left:
2x(x-3)-((1-x)(x+4))=0
We add all the numbers together, and all the variables
2x(x-3)-((-1x+1)(x+4))=0
We multiply parentheses
2x^2-6x-((-1x+1)(x+4))=0
We multiply parentheses ..
2x^2-((-1x^2-4x+x+4))-6x=0
We calculate terms in parentheses: -((-1x^2-4x+x+4)), so:
(-1x^2-4x+x+4)
We get rid of parentheses
-1x^2-4x+x+4
We add all the numbers together, and all the variables
-1x^2-3x+4
Back to the equation:
-(-1x^2-3x+4)
We get rid of parentheses
2x^2+1x^2+3x-6x-4=0
We add all the numbers together, and all the variables
3x^2-3x-4=0
a = 3; b = -3; c = -4;
Δ = b2-4ac
Δ = -32-4·3·(-4)
Δ = 57
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{57}}{2*3}=\frac{3-\sqrt{57}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{57}}{2*3}=\frac{3+\sqrt{57}}{6} $

See similar equations:

| 4(x+7)-3(x-6)=88 | | 4(x=7)-3(x-6) | | 6x/18=84 | | 7(x-11)-2(x-15)=13 | | -3(5+x)=-3(5+x) | | 4a=8*5 | | 3(x+4)-2(x-7)=69 | | 15y=8y | | 4(x-12)-2(x-19)=14 | | 15y=+8y | | 7x-84-3x-57=15 | | 49x=689 | | 10x+18=4x+186 | | 5(2x–1)=35 | | 5(2x–1)=35, | | 5x+2x-12=16 | | 5x=2x-12=16 | | 3x+3x-3=15 | | 4m+20-8m=32 | | 7^x=9^x | | 2x+16=2000 | | 12(x-5)=3(2+4x) | | 60÷8=r | | 24a=3 | | 100.75^x=110 | | 100*1.0075^x=110 | | -9x^2+22x-4=0 | | 2(x+½)=4x-7.5 | | 2x+4-2=0 | | 0x+4=14 | | 9x=-3x+-108 | | (4x+13)+(97)=180 |

Equations solver categories