2x(x-7)+36=4(2x-5)+60

Simple and best practice solution for 2x(x-7)+36=4(2x-5)+60 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(x-7)+36=4(2x-5)+60 equation:



2x(x-7)+36=4(2x-5)+60
We move all terms to the left:
2x(x-7)+36-(4(2x-5)+60)=0
We multiply parentheses
2x^2-14x-(4(2x-5)+60)+36=0
We calculate terms in parentheses: -(4(2x-5)+60), so:
4(2x-5)+60
We multiply parentheses
8x-20+60
We add all the numbers together, and all the variables
8x+40
Back to the equation:
-(8x+40)
We get rid of parentheses
2x^2-14x-8x-40+36=0
We add all the numbers together, and all the variables
2x^2-22x-4=0
a = 2; b = -22; c = -4;
Δ = b2-4ac
Δ = -222-4·2·(-4)
Δ = 516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{516}=\sqrt{4*129}=\sqrt{4}*\sqrt{129}=2\sqrt{129}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{129}}{2*2}=\frac{22-2\sqrt{129}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{129}}{2*2}=\frac{22+2\sqrt{129}}{4} $

See similar equations:

| 2(2x+3)-7x=23-5(x+3x | | x/2+7=-12 | | x2-3x=2x-6 | | 75=3.8r,+3.7r | | 3(5+n)=-29-8n | | x+0.201x=94238745 | | 7p+5=2(7p-1) | | (3x)+(3x+12)=90 | | g.3+11=25 | | 8(n+7)=-7n-34 | | 3x+14=4x+14 | | -1m-5=15 | | 6x-100-10x=12 | | 3b+(-7)=25 | | (2x)+(3x+20)=180 | | 13-3b=5(4b-2) | | 7/3t-7=19 | | 18x-4=8x+6 | | 5+1/8x=0 | | 94238745=x/0.201 | | 1.3v=36 | | 12/15=40/n | | -4(x-6)=7x-9 | | 2(3x+)+6(x-8)=32 | | 94238745=x/0.2 | | 35=1.4v | | -2x+1=x+22 | | 1.23x=8.61 | | -5=2y+10 | | -8x^-2+5=0 | | 94238745=0.2x | | 8.3-2.9b=-0.9b+6.7 |

Equations solver categories